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Abstract A symmetric relation of macroscopic quantities between two different steady
problems of the linearized Boltzmann equation is derived. A few applications to half-space
problems are presented first. Then, for the gas in bounded or unbounded domains such that
solid bodies or condensed phases are confined in a finite region, general representations of
the mass, momentum, and heat fluxes through the boundary (possibly at a point on or on
a part of it) are derived from the symmetric relation linked to the separability of boundary
data. This result implies a reduction of the original problem to a single elemental problem in
the same domain, as far as the fluxes are concerned. Many applications are also presented.
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1 Introduction

The linearized Boltzmann equation is widely used for the study of a slow rarefied gas flow
or a gas in a micro scale system such as a micro channel, an aerosol particle, etc. One of
the interesting features in such gas systems is that fluid-dynamical and thermal phenomena
are mutually inductive. For instance, a net heat flow through a channel is induced in the
Poiseuille flow, while a net mass flow is induced by a temperature gradient along the wall
(the thermal transpiration [1]). Those phenomena are sometimes related to each other, e.g.,
the former net flow is identical to the latter up to the dimensional factor in the above ex-
ample [2]. The thermal polarization [3, 4] and thermophoresis [5–7] of a particle are other
examples of the mutually inductive phenomena expected to be related to each other [8, 9]. In
the present paper, we investigate what kind of relation holds in general between two prob-
lems described by the steady linearized Boltzmann equation. We will eventually derive a
useful representation of the fluxes through the boundary for quite general situations.
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First in Sect. 2, we consider two time-independent boundary-value problems of the
linearized Boltzmann equation in the same domain. The domain may be bounded or un-
bounded, and its boundary is composed of two parts: one representing a simple solid surface
or an interface with the condensed phase of the gas (the real boundary, for short) and the
other representing an artificial boundary set in the interior of the gas, which includes the
specular and periodic boundaries as a special case, or a far field in an unbounded domain (the
imaginary boundary, for short). We derive a symmetric relation of averaged macroscopic
quantities between the two problems by integrating both in space and molecular velocity a
product of one solution and the other with reversed molecular velocity. The relation is ob-
tained by the self-adjointness and parity of collision operator with the aid of the condition of
detailed balance on the real boundary and its extension assumed on the artificial boundary,
provided that the velocity distribution function approaches the given data sufficiently fast at
a far distance for an unbounded domain. A concrete set of general situations in which the
relation holds is also presented. These situations will be dealt with in the rest of the paper.

One of the situations where the symmetric relation holds is a spatially one-dimensional
half-space problem of the linearized Boltzmann equation. In Sect. 3, we present some appli-
cations to half-space problems occurring in the study of the Knudsen layer structure [10–12].
In Sects. 3.1 and 3.2 we show the recovery of known relations for the so-called slip and jump
coefficients, while in Sect. 3.3 we provide unknown relations for jump coefficients and a
couple of new numerical data by use of them. In the half-space problems, the boundary data
on the real boundary affect the state of the gas in a far field. On the other hand, for bounded
or unbounded domains such that the real boundary is confined in a finite region, we may
deal with the boundary data separately, place by place, and consider a response of the sys-
tem to elemental sources put on the boundary. We shall call the response the Green function
in the present paper. In such domains, we can assure the symmetric relation to hold by a
rather simple argument based on the Stokes set of equations. In Sect. 4, we present a fruitful
consequence from the separability of the boundary data linked to the symmetric relation.
To be specific, after a preliminary argument in Sect. 4.2, we present general expressions
of the mass, momentum, and heat fluxes on the boundary in Sect. 4.3, which we call the
representation theorem and is the second main outcome of the present paper. The obtained
representation is not a mere superposition of the Green function. It tells that the problem
of finding a flux through the boundary (possibly a part of or even a point of it) is reduced
to finding the Green function for the elemental source corresponding to that flux put on the
interested boundary. The elemental sources are a collision invariant distributed uniformly or
linearly in space on the boundary (possibly on a part of or even at a point on it). Their cor-
respondence to the fluxes will be clear in the course of discussion in Sects. 4.2 and 4.3. We
also show corollaries of the theorem on the reciprocity of the fluxes induced by the Green
functions in Sect. 4.4. This property will become important, especially when linked to the
entropy theory to be developed in a separate paper. Various applications of the theorem will
be shown in Sect. 5.

Our Green function is not the ones discussed in [13, 14]. The source is not in the equa-
tion but in the boundary condition as the macroscopically meaningful elemental data. This
is intended to reflect the fact that the boundary data are given in accordance with the state of
the surroundings at the macroscopic level. Our purpose is not to represent the solution itself
as a superposition of the Green functions but to show the reduction of the original problem
to obtaining a single elemental solution corresponding to the interested fluxes through the
boundary. Simple analogues might come to mind. For instance, the Green reciprocity theo-
rem [15–17] for the Laplace equation is known in the electrostatics for conductors and in the
theory of heat conduction. For the continuum or near continuum gas (i.e., the system with
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small Knudsen numbers) in the linear regime, the flow field is described by the Stokes equa-
tion for the incompressible fluid and the temperature field by the Laplace equation [10–12].
From this point of view, the representation theorem may be regarded as the extension of the
classical reciprocity to arbitrary Knudsen numbers, though it includes more. We will give a
comment on this aspect in Corollary 9 in Sect. 5. We also mention a simple analogue in the
theory of radiative transfer [18] to the example of a half-space problem in Sect. 3.2.

2 Symmetry of the Steady Linearized Boltzmann Equation

2.1 Problem

We start with a physically rather abstract or seemingly artificial formulation of the problem.
Let us denote by x and ζ the dimensionless position and molecular velocity. We shall

consider a function φ(x, ζ ) in a certain domain of x, say D, and for the whole space of ζ
that satisfies the steady, inhomogeneous linearized Boltzmann equation:

ζi

∂φ

∂xi

+ Fi

∂φ

∂ζi

= 1

K
L(φ) + I. (1)

Here F is a given vector depending on x and ζ and satisfies the condition ∂
∂ζi

FiE = 0 with

E(ζ ) = π−3/2 exp(−|ζ |2), K is an arbitrary positive constant (0 < K < ∞), and I is a given
function of x and ζ . The explicit form of the linearized collision integral L(φ) is suppressed,
because L is required only to have the following properties in the discussions:

(i) L(·) commutes with the parity operator acting on ζ :

L(�)− = L(�−) for any �, (2a)

where the function with superscript − is defined as �−(x, ζ ) ≡ �(x,−ζ ).

(ii) L(·) is self-adjoint:

〈�L(�)〉 = 〈�L(�)〉 for any � and �, (2b)

where the brackets 〈·〉 indicate the following moment with respect to ζ :

〈�〉 =
∫

�(ζ )E(ζ )dζ .

(iii) L(�) = 0 holds if and only if � is a linear combination of 1, ζ , and |ζ |2.
(iv) L(·) is non-positive:

〈�L(�)〉 ≤ 0 for any �, (2c)

and the equality holds if and only if � is a linear combination of 1, ζ , and |ζ |2.

The following obvious properties will be frequently used in the sequel:

(�−)− = �, 〈�〉 = 〈�−〉 for any �. (3)

On a part of the boundary ∂D, which we denote by ∂Dw, φ obeys the following condi-
tion:

φ = gw +
∫

ζ∗
n <0

|ζ ∗
n |E(ζ ∗)

|ζn|E(ζ )
R(ζ ∗, ζ ;x)(φ∗ − g∗

w)dζ ∗, ζn > 0, (4)
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where ζn = ζ ·n with n being the unit vector inward normal to the boundary ∂Dw at position
x, gw is a given function of x and ζ to be specified soon later in (5), and φ∗ and g∗

w stand for
φ(x, ζ ∗) and gw(x, ζ ∗) respectively. The kernel R is a given function having the properties
summarized in Appendix A, where and in what follows we denote by RCR the kernel satis-
fying the condition 〈ζnφ〉 = 0 and by RPR the kernel free from this condition. The required
properties are different between RCR and RPR. The function gw(x, ζ ) is defined by

gw =
{

2ζ · uw + (|ζ |2 − 5
2

)
τw if R = RCR,

Pw + 2ζ · uw + (|ζ |2 − 5
2

)
τw if R = RPR,

(5)

where uw, τw, and Pw are given constants in ζ with uw · n = 0. In general, uw, τw, and Pw

depend on the position x on ∂Dw. Note that gw is defined for the whole range of ζ .
Physically, ∂Dw is the part corresponding to the real boundary, which is the surface of

a simple solid body (a simple surface, for short) or the interface with the condensed phase,
i.e., liquid or solid, of the gas (the interface, for short). On the former, there occurs no mass
flow across the boundary (i.e., 〈ζnφ〉 = 0), while on the latter it may occur in general. RCR

represents the reflection kernel for the former and RPR that for the latter in the reference
equilibrium state at rest. The deviation of the state of the boundary are represented by Pw,
uw, and τw involved in gw. The dependence of R on x comes from the possible change of the
boundary material and typically appears as the change of the accommodation coefficients.

From now on, we consider two functions φA and φB such that:

1. φA satisfies (1) and (4) with Fi = Fi , I = IA, and gw = gA
w ,

2. φB satisfies (1) and (4) with Fi = F −
i , I = IB , and gw = gB

w ,

where R in (4) is common to φA and φB . The aim of Sect. 2 is to derive a symmetric identity
between the global quantities of φA and of φB . For the moment, we proceed without any
information about φ’s on the remaining part of the boundary ∂D, which we denote by ∂Dg,
i.e., ∂Dg = ∂D \ ∂Dw.

2.2 Symmetric Relation

We first show a symmetric identity that can be obtained without specific information on ∂Dg.
The presented form is a slight extension of those in the literature (e.g., [13, 19, 20]) mainly
in the sense that I is arbitrary as far as the solution exists.

Proposition 1 Consider the functions φA and φB such that:

(i) φA satisfies (1) and (4) with Fi = Fi , I = IA, and gw = gA
w ,

(ii) φB satisfies (1) and (4) with Fi = F −
i , I = IB , and gw = gB

w ,

where R in (4) is common to φA and φB . If the kernel R satisfies the condition of detailed
balance [13, 21] (see Appendix B):

|ζ ∗
n |R(ζ ∗, ζ ;x)E(ζ ∗) = |ζn|R(−ζ ,−ζ ∗;x)E(ζ ) for ζn > 0, ζ ∗

n < 0, (6)

the following symmetric identity holds:∫
∂Dw

〈ζng
B−
w φA〉dS + 1

2

∫
∂Dg

〈ζnφ
B−φA〉dS −

∫
D

〈IB−φA〉dx

=
∫

∂Dw

〈ζng
A−
w φB〉dS + 1

2

∫
∂Dg

〈ζnφ
A−φB〉dS −

∫
D

〈IA−φB〉dx, (7)

where dS is the surface element at position x.
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Proof We first integrate (1) for φA (or φB ) multiplied by φB−E (or φA−E) over the whole
space of ζ :

〈
ζi

∂φA

∂xi

φB−
〉
+

〈
Fi

∂φA

∂ζi

φB−
〉

= 1

K
〈L(φA)φB−〉 + 〈IAφB−〉, (8a)

〈
ζi

∂φB

∂xi

φA−
〉
+

〈
F −

i

∂φB

∂ζi

φA−
〉

= 1

K
〈L(φB)φA−〉 + 〈IBφA−〉. (8b)

Subtracting (8b) from (8a) leads to, with the aid of (2a), (2b), (3), and the condition for F

immediately after (1),

1

2

∂

∂xi

〈ζiφ
B−φA〉 + 〈IB−φA〉 = 1

2

∂

∂xi

〈ζiφ
A−φB〉 + 〈IA−φB〉. (9)

Integrating (9) over the domain D results in the well-known identity (e.g., see [13]):

−1

2

∫
∂D

〈ζnφ
B−φA〉dS +

∫
D

〈IB−φA〉dS = −1

2

∫
∂D

〈ζnφ
A−φB〉dS +

∫
D

〈IA−φB〉dS. (10)

Next, we split the surface integrals into those on ∂Dw and ∂Dg and transform the integral
on the former. Simple rearrangement yields on ∂Dw

〈ζnφ
B−φA〉 = 〈ζn(φ

B− − gB−
w )(φA − gA

w)〉 + 〈ζng
B−
w φA〉 + 〈ζnφ

B−gA
w〉 − 〈ζng

B−
w gA

w〉.

The last term on the right-hand side vanishes because of (5) and uw · n = 0. Further, for R

satisfying the condition of detailed balance, the first term on the right-hand side vanishes, as
shown in Appendix B. Thus, the integrand of the surface integral on ∂Dw is reduced to

〈ζnφ
B−φA〉 = 〈ζng

B−
w φA〉 − 〈ζng

A−
w φB〉, 〈ζnφ

A−φB〉 = 〈ζng
A−
w φB〉 − 〈ζng

B−
w φA〉.

Substitution into (10) yields the desired identity. �

2.2.1 Condition on ∂Dg

We now introduce the condition for φ on ∂Dg to refine Proposition 1, and thus φ ought to be
considered as a solution of the boundary-value problem of (1), (4), and the condition (11) on
∂Dg below. We shall consider three types of conditions on ∂Dg and correspondingly split it
into three parts: ∂D(i)

g , ∂D(ii)
g , and ∂D(iii)

g . Each part is defined as follows:

(i) ∂D(i)
g is the part where φ for the inward direction of ζ is given:1

φ(x, ζ ) = hin(x, ζ ) for ζn > 0, x ∈ ∂D(i)
g . (11a)

Here hin is a given function defined for ζn > 0. For later discussions, we extend the
range of this function to the whole space of ζ and denote the extended function by
h(x, ζ ). The way of extension is arbitrary.

1Mathematically, the conditions (4) and (11a) do not exclude each other, so that there may be a part of the

boundary which can be regarded as in ∂Dw or in ∂D
(i)
g . However, there arises no difference to be cared.
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(ii) ∂D(ii)
g is the part that reaches infinity when D is an unbounded domain. The asymptotic

form of φ for large |x| is given:

φ(x, ζ ) → h(x, ζ ) as |x| → ∞. (11b)

Note that h(x, ζ ) is defined for the whole range of ζ and satisfies (1) by definition.
(iii) ∂D(iii)

g is the part where φ for the inward direction of ζ at position x is related to that
for the outward direction of ζ ′ at position x ′:

φ(x, ζ ) = h(x, ζ )+
∫

∂D
(iii)
g

∫
ζ ′
n′<0

P (x ′, ζ ′,x, ζ )(φ′−h′)dζ ′dS′ for ζn > 0, x ∈ ∂D(iii)
g ,

(11c)
where h(x, ζ ) is a given function defined for the whole range of ζ and for any x ∈
∂D(iii)

g , ζ ′
n′ = ζ ′ · n′, and n′ and dS′ are the inward unit vector normal to ∂D(iii)

g and
the surface element at point x ′ respectively. φ′ and h′ stand for φ(x ′, ζ ′) and h(x ′, ζ ′)
respectively. P is a given function defined for ζn > 0 and ζ ′

n′ < 0 that prescribes the
relation between two points x and x ′ on ∂D(iii)

g . Here we restrict P to the functions that
meet the following conditions (an extension of the conditions in Appendices A and B):

(a) For ζn > 0 and ζ ′
n′ < 0,

|ζn|E(ζ )P (x ′, ζ ′,x, ζ ) = |ζ ′
n′ |E(ζ ′)P (x,−ζ ,x ′,−ζ ′).

(b) For a certain given function g0(x, ζ ) ≥ 0 defined for ζn > 0 and x ∈ ∂D(iii)
g , the

following relation holds:

1 = g0(x, ζ ) +
∫

∂D
(iii)
g

∫
ζ ′
n′<0

P (x ′, ζ ′,x, ζ )dζ ′dS′ for ζn > 0.

(c) P (x ′, ζ ′,x, ζ ) ≥ 0, and it is not identically zero.

The property (a) is an extension of the condition of detailed balance to among different
points on the boundary. It should be noted that the uniqueness condition corresponding
to the third property of RCR and RPR in Appendix A is not required of P . Thus, the
specular and periodic type boundaries are classified into ∂D(iii)

g . Due to the property (c),
(11a) is excluded from (11c).

Some physical comments would be in order on the boundary conditions. As mentioned
before, ∂Dw is the part corresponding to the real boundary, i.e., a simple surface or the
interface. On the former, there occurs no mass flow across the boundary, while on the latter
it may occur in general. The kernel RCR represents the reflection rule on the former and RPR

on the latter. It is important to notice that the specular reflection condition is excluded from
the part ∂Dw because of the third property of RCR and RPR in Appendix A. The remaining
part ∂Dg is the imaginary boundary, which is set inside a gas. The specular reflection and
periodic boundary conditions are a typical example of the part ∂D(iii)

g . It is readily checked
that they have the properties required of P . Arbitrariness of h on ∂D(i)

g and ∂D(iii)
g aims at

the application to a rather artificial problem setting often adopted in numerical simulations.
We close the present subsection with the following lemma:
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Lemma 1 Let φA and φB obey the condition (11) with h = hA and h = hB respectively,
where P in (11c) is common to φA and φB . Then the following identity holds:

∫
∂D

(i)
g ∪∂D

(iii)
g

〈ζn(φ
A− − hA−)(φB − hB)〉dS = 0, (12)

where hA and hB on ∂D(i)
g are an arbitrary extension of hA

in and hB
in to the whole range of ζ .

Proof For brevity, we denote φα − hα by ψα (α = A,B). Obviously ψα = 0 for ζn > 0
on ∂D(i)

g . The integrand on ∂D(i)
g is readily seen to vanish by a change of variables:

〈ζnψ
A−ψB〉 =

∫
ζn>0

ζnψ
A−ψBEdζ −

∫
ζn>0

ζnψ
AψB−Edζ = 0,

and (12) is reduced to the surface integral on ∂D(iii)
g . For the reduced integral

∫
∂D

(iii)
g

〈ζnψ
A−ψB〉dS =

∫
∂D

(iii)
g

∫
ζn>0

ζnψ
A−ψBEdζdS −

∫
∂D

(iii)
g

∫
ζn>0

ζnψ
AψB−EdζdS,

we use (11c) for ψB in the first term and that for ψA in the second term on the right-hand
side. Then, by the use of the property (a) of P , the first and second terms are seen to cancel
out each other in a way similar to the proof of Lemma 4 in Appendix B. �

2.2.2 Symmetric Relation

We now present the first main outcome of the present paper, which is the refinement of
Proposition 1 due to Lemma 1:

Proposition 2 (Symmetric relation) Consider the solutions φA and φB of the boundary-
value problem (1), (4), and (11) such that:

(i) φA is a solution in the case of I = IA, gw = gA
w , Fi = Fi , and h = hA,

(ii) φB is a solution in the case of I = IB , gw = gB
w , Fi = F −

i , and h = hB ,

where R in (4) and P in (11c) are common to the problems. Then:

1. If the kernel R on ∂Dw satisfies the condition of detailed balance (6), and
2. if the part ∂D(ii)

g is absent or φA and φB approach hA and hB sufficiently fast in (11b) so
that ∫

∂D
(ii)
g

〈ζn(φ
A− − hA−)(φB − hB)〉dS = 0, (13)

the following equality holds:

∫
∂Dw

〈ζng
B−
w φA〉dS +

∫
∂Dg

〈ζnh
B−φA〉dS − 1

2

∫
∂Dg

〈ζnh
B−hA〉dS −

∫
D

〈IB−φA〉dx

=
∫

∂Dw

〈ζng
A−
w φB〉dS +

∫
∂Dg

〈ζnh
A−φB〉dS − 1

2

∫
∂Dg

〈ζnh
A−hB〉dS −

∫
D

〈IA−φB〉dx.

(14)
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It should be reminded that hA and hB on ∂D(i)
g may be any extension of hA

in and hB
in to the

whole range of ζ [see (i) in Sect. 2.2.1].2

Proof The refinement is achieved by the reduction of 〈ζnφ
A−φB〉 on ∂Dg due to Lemma 1:

∫
∂Dg

〈ζnφ
A−φB〉dS =

∫
∂Dg

(
〈ζnh

A−φB〉 + 〈ζnφ
A−hB〉 − 〈ζnh

A−hB〉
)

dS

+
∫

∂D
(ii)
g

〈ζn(φ
A− − hA−)(φB − hB)〉dS. �

It should be noted that I and h are not restricted to any specific form as far as the solution φ

exists (see the example in Sect. 3.3).
The condition (13) is fulfilled for bounded domains. It is also fulfilled for unbounded

domains at least in the following two general situations for F = 0:

1. D is a spatially one-dimensional half-space.
2. D is an unbounded three dimensional domain and ∂Dw is confined in a finite region, so

that ∂Dg = ∂D(ii)
g .

The first case is obvious because the area of surface integral does not change in passing to
the limit |x| → ∞, and φA and φB in the surface integral on ∂Dg may be replaced by hA

and hB . The second case is not trivial and is due to Lemma 2 to be shown soon later.3

In the rest of the paper, we work on bounded domains and unbounded domains in the situ-
ations raised above. We first present some applications to the first case, i.e., one-dimensional
half-space problems, in Sect. 3. The first case is not merely simple but also requires a sepa-
rate discussion from the second case. It is due to the fact that the source on the real boundary
gw does affect the state of the gas in a far field in that case and thus h cannot be given inde-
pendent of gw [22]. In contrast, we may separately deal with the sources on the boundaries
in the second case, i.e., the three dimensional unbounded domain, and consequently can es-
tablish a unified theoretical framework with the case of bounded domain. We present this
unified approach in Sect. 4, which leads to the second main outcome of the present paper
on general representations of the mass, momentum, and heat fluxes passing through the
boundary. We will show its applications in Sect. 5.

We close the present subsection with the announced lemma:

Lemma 2 Let φA and φB satisfy (1) with F = 0 in an unbounded domain D with ∂Dg =
∂D(ii)

g , where h = hA and hB respectively in (11b). Then the following equality holds:

∫
∂Dg

〈ζn(φ
A− − hA−)(φB − hB)〉dS = 0.

2The respective values of the second and third terms of each side of (14) depend on the way of extension of

hA
in and hB

in. However, the following relation always holds:

∫
∂Dg

〈ζnhB−φA〉dS − 1

2

∫
∂Dg

〈ζnhB−hA〉dS =
∫
∂Dg

〈ζnhA−φB 〉dS − 1

2

∫
∂Dg

〈ζnhA−hB 〉dS.

3As is clear from the proof of Lemma 2, the key estimate (33) in [19] is incorrect.
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Proof Let us denote φα −hα by ψα (α = A, B). Since, by definition, hα is a solution of (1)4

with F = 0, ψα is a solution of (1) with F = 0 and Iα = 0 and tends to vanish as |x| → ∞.
Now consider a sufficiently large sphere that contains the real boundary ∂Dw inside. We
denote by Sg the surface of the sphere and by rg its radius. ψα varies with the scale of rg

near Sg for sufficiently large rg, and the behavior at a far distance is well described by the
Grad-Hilbert expansion [10] for small Kn/rg ( 1). This implies that the flow velocity and
the pressure due to ψα are described by the Stokes equation for the incompressible fluid,
while the temperature due to ψα is described by the Laplace equation [10]. Thanks to the
general solution of the Stokes equation [23–25] and the property of the harmonic functions
(e.g., [26]), the pressure due to ψα is seen to be of O(|x|−2), while the flow velocity and
temperature due to ψα are seen to be of O(|x|−1). Thus ψα for large |x| is estimated as

ψα = 2ζic
α
i +

(
|ζ |2 − 5

2

)
cα + O(|x|−2) (α = A, B),

where cα
i and cα are a quantity of O(|x|−1), independent of ζ , and we have

∫
∂Dg

〈ζnψ
A−ψB〉dS = lim

rg→∞

∫
∂Sg

〈ζnψ
A−ψB〉dS = lim

rg→∞

∫
∂Sg

O(|x|−3)dS = 0,

which is the desired equality. �

3 Application to Half-Space Problems

We show some applications of the symmetric relation (14) to half-space problems. Through-
out this section, the real boundary is assumed to be locally isotropic [10, 12]. Sections 3.1
and 3.2 present the recovery of known relations, while Sect. 3.3 provides unknown relations.

3.1 Shear and Thermal Creep Flows over a Plane Wall

When a rarefied gas is bounded by a wall with a gradient of temperature along its surface, a
flow is induced along the wall in the direction of the gradient (the thermal creep flow; see,
e.g., [1, 27–29]). We discuss a cross relation of this flow to the shear flow over the wall.

Let us denote by xiL the space coordinate with L = (
√

π/2)�0 where �0 is the mean
free path of a molecule at the equilibrium state at rest with pressure p0 and temperature T0.
Consider a gas occupying a half space (x1 > 0) over a resting plane wall in the following
two situations depicted in Fig. 1:

1. Thermal creep (Problem T, for short). The temperature of the wall is given by
T0(1 + CTx2) with CT being a positive constant. At a far distance, the state of the gas is
independent of x1, the pressure is p0, and the temperature is the same as that of the wall.

2. Shear flow (Problem S, for short). The temperature of the wall is T0. At a far distance, the
gas pressure is p0, the temperature is T0, and the x2-component of the flow changes lin-
early in x1 with a constant gradient [(2kT0/m)1/2/L]CS, where k and m is the Boltzmann
constant and the mass of a molecule, respectively.

4In general, hα may have singularities in the domain under consideration, so does ψα . However, it does not
cause any trouble, because only the outer region, where hα and ψα are regular, will be considered.
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Fig. 1 Thermal creep and shear flow problems

The condition CT, |CS|  1 is assumed for linearization. We denote by 2p0(2kT0/m)−5/2 ×
(1 + φJ )E the velocity distribution function for problem J (J = T,S). φJ is known to be
sought in the form of φT = CT[(|ζ |2 − 5

2 )x2 − �T(x1, ζ )] and φS = CS[2ζ2x1 − �S(x1, ζ )],
where �J is a solution of the following boundary-value problem:

ζ1
∂�J

∂x1
= L(�J ) + IJ (J = T, S), (15a)

�J =
∫

ζ∗
1 <0

|ζ ∗
1 |E(ζ ∗)
ζ1E(ζ )

RCR(ζ ∗, ζ )φ∗
J dζ ∗, ζ1 > 0, x1 = 0, (15b)

�J → hJ as x1 → ∞, (15c)

where

IT = ζ2

(
|ζ |2 − 5

2

)
, hT = bTζ2 +ζ2A(|ζ |), IS = 2ζ1ζ2, hS = bSζ2 +ζ1ζ2B(|ζ |),

RCR is independent of x, A(|ζ |) is the solution of L(ζiA) = −ζi(|ζ |2 − 5
2 ) such that

〈|ζ |2A〉 = 0, and B(|ζ |) is the solution of L(ζijB) = −2ζij with ζij = ζiζj − 1
3 |ζ |2δij .

The reduced problem is known to have a solution if and only if bJ takes a special value,
and the solution is unique and approaches hJ exponentially fast as x1 → ∞ [22, 30–33].
With these properties in mind, we use Proposition 2 by putting φA = �T and φB = �S to
have

−1

2
〈ζ1h

−
S hT〉 −

∫ ∞

0
〈I−

S �T〉dx1 = −1

2
〈ζ1h

−
T hS〉 −

∫ ∞

0
〈I−

T �S〉dx1.

In the meantime, the integration of (15a) for J = T multiplied by ζ2E shows the second
term on the left-hand side to vanish, and we eventually obtain

〈ζ 2
1 ζ 2

2 B(|ζ |)〉bT = −
∫ ∞

0

〈
ζ2

(
|ζ |2 − 5

2

)
�S

〉
dx1 − 〈ζ 2

1 ζ 2
2 A(|ζ |)B(|ζ |)〉. (16)

As depicted in Fig. 1(a), − 1
2bT is the dimensionless flow velocity at a far distance in the

x2-direction normalized by CT in problem T, while 〈ζ2(|ζ |2 − 5
2 )�S〉 is the dimensionless

heat flow in the same direction normalized by CS in problem S. Equation (16) represents the
cross relation between the two problems. Incidentally, 2〈ζ 2

1 ζ 2
2 B(|ζ |)〉 is the dimensionless

viscosity and 2〈ζ 2
1 ζ 2

2 A(|ζ |)B(|ζ |)〉 the dimensionless coefficient of the thermal stress.
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The relation (16) can be checked by the numerical data in the literature (see, e.g., [20]).
By using the notation in [10], (16) is rewritten as

γ1K1 = −1

2
γ3 +

∫ ∞

0
HA(η)dη, (17)

where γ1 = 2〈ζ 2
1 ζ 2

2 B〉, K1 = bT/2, γ3 = 2〈ζ 2
1 ζ 2

2 AB〉, HA = −〈ζ2(|ζ |2 − 5
2 )�S〉, and η = x1.

For the diffuse reflection boundary condition, K1 and HA have been computed accurately as

K1 = −0.38316,

∫ ∞

0
HA(η)dη = 1

2
· 0.23368 (BGK model [10, 27, 34]),

K1 = −0.6465,

∫ ∞

0
HA(η)dη = 0.1530 (Boltzmann equation; hard sphere [10, 28]).

For the latter, we show the values recomputed from the data obtained in [35] (K1 = −0.6463
and

∫ ∞
0 HAdη is not given in [10, 28]). According to [10], both γ1 and γ3 are unity for the

BGK5 model, while γ1 = 1.270042427 and γ3 = 1.947906335 for the hard-sphere Boltz-
mann equation. Substitution of these values shows the relation (16) or (17) to hold.

3.2 Evaporation and Condensation on a Plane Condensed Phase

Consider a gas occupying a half space bounded by its plane condensed phase. The condensed
phase is at rest and its temperature is uniform and constant. At a far distance, the gas is in
the state of uniform pressure with uniform flow and temperature gradient normal to the
interface. We discuss the steady behavior of the gas in the situation (see, e.g., [36–38]).

We use the same notation as Sect. 3.1 and take the temperature of the condensed phase
and the corresponding saturation gas pressure as the reference temperature T0 and pres-
sure p0. If we denote by 2p0(2kT0/m)−5/2(1 + φ)E the velocity distribution function and
by T0(1 + �τ + CTx1), p0(1 + �P), and (2kT0/m)1/2(u∞,0,0) the temperature, pressure,
and flow velocity at a far distance, the problem is formulated as follows:

ζ1
∂φ

∂x1
= L(φ),

φ =
∫

ζ∗
1 <0

|ζ ∗
1 |E(ζ ∗)
ζ1E(ζ )

RPR(ζ ∗, ζ )φ∗dζ ∗, ζ1 > 0, x1 = 0,

φ → h ≡ �P +
(

|ζ |2 − 5

2

)
�τ +

[(
|ζ |2 − 5

2

)
x1 − ζ1A(|ζ |)

]
CT + 2ζ1u∞, as x1 → ∞,

where RPR is independent of x and �P , �τ , CT, and u∞ are constants. Note that the heat
flow p0(2kT0/m)1/2(Q∞,0,0) at a far distance is given by

Q∞ =
〈
ζ1

(
|ζ |2 − 5

2

)
φ

〉
x1→∞

=
〈
ζ1

(
|ζ |2 − 5

2

)
h

〉
= −1

3
〈|ζ |4A(|ζ |)〉CT.

5The BGK (Bhatnagar–Gross–Krook) model is termed “BKW” (Boltzmann–Krook–Welander) equation in
the cited references because of the independent contribution by Welander.
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Denoting by subscript (1,0) the quantities φ, h, �P , and �τ when (Q∞, u∞) = (1,0) and
by subscript (0,1) the counterparts when (Q∞, u∞) = (0,1), we can split the problem as

φ = φ(1,0)Q∞ + φ(0,1)u∞, h = h(1,0)Q∞ + h(0,1)u∞,

�P = �P(1,0)Q∞ + �P(0,1)u∞, �T = �T(1,0)Q∞ + �T(0,1)u∞.

As in Sect. 3.1, each of the reduced problems, the case of (Q∞, u∞) = (1,0) or (0,1),
is known to have a solution if and only if �P(1,0) and �τ(1,0) (or �P(0,1) and �τ(0,1)) take
a special set of values, and the solution φ(0,1) (or φ(1,0)) is unique and approaches h(0,1)

(or h(1,0)) exponentially fast as x1 → ∞.6 With these properties in mind, we make use of
Proposition 2 with φA = φ(1,0) and φB = φ(0,1) to have the relation7

−1

2
〈ζ1h

−
(0,1)h(1,0)〉x1→∞ = −1

2
〈ζ1h

−
(1,0)h(0,1)〉x1→∞,

which is reduced to

�P(1,0) = �τ(0,1). (18)

The relation (18) can be checked by numerical data in the literature. In fact, �P(1,0) and
�τ(0,1) are related to C1 and d∗

4 in [10] as C1 = − 1
3 〈|ζ |4A(|ζ |)〉�P(1,0) and d∗

4 = �τ(0,1),
where C1 and d∗

4 for the complete condensation condition are given as

C1 = 0.55844, d∗
4 = −0.44675 (BGK model [10, 34]),

C1 = 1.0947, d∗
4 = −0.4557 (Boltzmann equation; hard sphere [10, 37, 39]).

Note that 1
3 〈|ζ |4A〉 is 5

2γ2 in [10] (γ2 = 1 for the BGK model and γ2 = 1.922284066 for the
hard-sphere Boltzmann equation). Substituting these values shows the relation (18) to hold.

3.3 Jump Condition for the Stokes Set of Equations on the Condensed Phase

Consider the steady behavior of a slightly rarefied gas around its condensed phase with arbi-
trary (smooth) shape in the linear regime. According to the asymptotic theory [10–12, 34] for
small Knudsen numbers, the overall behavior of the gas can be described fluid-dynamically
by the Stokes set of equations with a proper set of slip condition for the flow velocity and
jump condition for the pressure and temperature. However, a correction is required in a thin
layer adjacent to the interface with the thickness of a few mean free paths. The thin layer

6As is seen from the form of the equation and the boundary condition, φ(0,1) (or φ(1,0)) can be sought as a
function of x1, ζ1, and |ζ |. This property will be used later in Sect. 3.3.
7There is a simple analogue in the theory of radiative transfer [18], in which the following two problems in a
half space of isotropic scattering field are considered (F. Golse, private communication):

μ∂xf = −f + 〈f 〉, f (x = 0,μ > 0) = ϕ(μ), f → f∞ = 〈f∞〉 as x → ∞,

μ∂xg = −g + 〈g〉, g(x = 0,μ > 0) = 0, 〈μg〉 = −1,

where f (x,μ) and g(x,μ) (x ≥ 0, −1 ≤ μ ≤ 1), the analogue to φ(0,1) and φ(1,0) , denote the intensity of

radiation, 〈f 〉 = 1
2

∫ 1
−1 f (x,μ′)dμ′ , and ϕ is a given function. Here, concerned is mainly the value of f∞

in the first problem and g(x = 0,μ < 0) in the second. We can show that f∞ = 1
2

∫ 1
0 ϕ(μ′)g(0,−μ′)dμ′ in

a way similar to the derivation of (10), where g(x = 0,μ > 0) = 0 is essential to remove the contribution of
f (x = 0,μ < 0) from the identity. In this simple analogue, elaborate considerations on the boundary like in
Sect. 2 are not necessary.
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is called the Knudsen layer, and the correction is correspondingly called the Knudsen-layer
correction; the solution of the Stokes set is called the fluid-dynamic part (of the solution of
the Boltzmann equation). The study of the Knudsen layer is reduced to several half space
problems of the homogeneous or inhomogeneous Boltzmann equation. The problems treated
in Sects. 3.1 and 3.2 are typical examples of those reduced problems. By the analyses of the
reduced problems, we can obtain the concrete value of the coefficients, the so-called slip and
jump coefficients, occurring in the slip and jump conditions. For the details of the asymptotic
theory, the reader is referred to [10, 12]. Here we merely present the general expressions for
the pressure and jump conditions derived by the theory. We are going to show some relations
among the jump coefficients obtained by the use of the symmetric relation (14).

Let us denote by τ and P the perturbed temperature and pressure of the fluid-dynamic
part and by τw and Pw the perturbed temperature of the condensed phase and the correspond-
ing perturbed saturation pressure of the gas. According to [10], if neglecting the second and
higher order effects of the Knudsen number, the difference of τ and P from τw and Pw at
the interface, which is called the temperature jump and pressure jump respectively, is given
by

[
P − Pw

τ − τw

]
= un

[
C∗

4

d∗
4

]
+

√
π

2
Kn

{
∂τ

∂xn

[
C1

d1

]
+ 2

∂un

∂xn

[
C6

d6

]
− 2κ̄un

[
C7

d7

]}
.

Here un is the component inward normal to the interface of the fluid-dynamic part of the
dimensionless flow velocity, xn the same component of the dimensionless position vector,
and κ̄/L is the mean curvature of the interface.8 In the above expression, un, ∂τ/∂xn, and
∂un/∂xn on the right-hand side represent their value at the interface.

As partially mentioned in Sect. 3.2, the coefficients (C1, d1) and (C∗
4 , d∗

4 ) are re-
lated to �P ’s and �τ ’s there as (C1, d1) = − 5

2γ2(�P(1,0),�τ(1,0)) and (C∗
4 , d∗

4 ) =
(�P(0,1),�τ(0,1)). On the other hand, (C6, d6) and (C7, d7) are respectively determined with
the solution φ6 and φ7 of the following half space problems:

ζ1
∂φJ

∂x1
= L(φJ ) + IJ (J = 6,7), (19a)

φJ =
∫

ζ∗
1 <0

|ζ ∗
1 |E(ζ ∗)
ζ1E(ζ )

RPR(ζ ∗, ζ )φ∗
J dζ ∗, ζ1 > 0, x1 = 0, (19b)

φJ → hJ , as x1 → ∞, (19c)

where

I6 = 1

2
(3ζ 2

1 − |ζ |2), h6 = −C6 −
(

|ζ |2 − 5

2

)
d6 + 1

4
(3ζ 2

1 − |ζ |2)B(|ζ |),

I7 = 1

2
(ζ 2

1 − |ζ |2) ∂ψ(0,1)

∂ζ1
, h7 = −C7 −

(
|ζ |2 − 5

2

)
d7,

and RPR is independent of x. The ψ(0,1) is a function of x1, ζ1, and |ζ | defined by ψ(0,1) =
φ(0,1) − h(0,1) (see the footnote 6) and vanishes exponentially as x1 → ∞.

8Here and in [10], the curvature is negative when the corresponding center of curvature lies on the gas side.
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We first apply Proposition 2 to the pairs of φ6 and φ(1,0) by putting φA = φ6 and φB =
φ(1,0) and of φ6 and φ(0,1) by putting φA = φ6 and φB = φ(0,1). Then we eventually obtain

C6 = γ1 − 3

4

∫ ∞

0
(�∗

4 + �∗
4)dx1, d6 = 1

5γ2

(
2γ3 + 3

∫ ∞

0
(�1 + �1)dx1

)
. (20)

Here we followed the notation in [10], i.e., �∗
4 + �∗

4 = 2
3 〈|ζ |2ψ(0,1)〉, �1 + �1 =

− 5
6γ2〈|ζ |2ψ(1,0)〉, where γ1 ∼ γ3 are those in Sects. 3.1 and 3.2 and ψ(1,0) = φ(1,0) − h(1,0).

The relation (20) can be checked by the numerical data in the literature. In the case of the
complete condensation condition, they are given for the BGK model as follows [10, 34]:

C6 = 0.82085,

∫ ∞

0
(�∗

4 + �∗
4)dx1 = 0.23886,

d6 = 0.33034,

∫ ∞

0
(�1 + �1)dx1 = −0.11609.

Since γ1 = γ2 = γ3 = 1 for this model, the relation (20) is seen to hold. On the other hand,
the values of C6 and d6 have been unknown for the other cases, and here we report their
values for the hard-sphere Boltzmann equation by the use of (20) with the aid of the data of
ψ(1,0) and ψ(0,1) available in the literature (e.g., [37, 39–41]). By the use of the numerical
data in [40, 41], the integrals of �∗

4 + �∗
4 and �1 + �1 are computed as

∫ ∞

0
(�∗

4 + �∗
4)dx1 = 0.2834,

∫ ∞

0
(�1 + �1)dx1 = −0.1943.

Since γ1 = 1.270042427, γ2 = 1.922284066, and γ3 = 1.947906335, we have

C6 = 1.0575, d6 = 0.3447 (Boltzmann equation; hard-sphere)

in the case of the complete condensation condition. To our best knowledge, this is the first
report on the values of these coefficients for the hard-sphere Boltzmann equation.

Next we apply Proposition 2 to the pairs of φ7 and φ(1,0) by putting φA = φ7 and φB =
φ(1,0) and of φ7 and φ(0,1) by putting φA = φ7 and φB = φ(0,1). Then, we eventually obtain

C7 = 1

2

∫ ∞

0

〈
(ζ 2

1 − |ζ |2)ψ−
(0,1)

∂ψ(0,1)

∂ζ1

〉
dx1 − 3

2

∫ ∞

0
(�∗

4 + �∗
4)dx1, (21a)

d7 = 1

2

∫ ∞

0

〈
(ζ 2

1 − |ζ |2)ψ−
(1,0)

∂ψ(0,1)

∂ζ1

〉
dx1 + 1

5γ2

∫ ∞

0
〈(3ζ 2

1 − |ζ |2)A(|ζ |)ψ(0,1)〉dx1.

(21b)

The present example demonstrates the advantage of a rather abstract formulation in
Sect. 2. The problem for φ7 contains the derivative of non Chapman–Enskog solution ψ(0,1)

as the inhomogeneous term, which is typical in the higher-order analyses of the Knudsen-
layer. The feature that I (and h) is not required to be of a specific form is advantageous in
such analyses and will allow us to derive further identities for slip and jump coefficients.

4 Representation Theorem on Mass, Momentum, and Heat Fluxes

As noted just before Lemma 2 in Sect. 2.2.2, a remarkable difference of the bounded and
three dimensional unbounded domains from the half space is the fact that one may separately
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discuss the effect of the sources on the boundary. We shall present a fruitful consequence
obtained from this property linked to the symmetric relation (14).

4.1 Problem and Formulation

Consider the steady behavior of a rarefied gas in a domain that is arbitrary except for the
conditions to be described later. There is no external force. The state of the gas is so close
to the reference equilibrium state at rest with density ρ0 and temperature T0 that the higher
order terms of the deviation from the reference state may be neglected. We shall mainly
discuss the general properties of the mass, momentum, and heat transfered to the boundary
of the domain under consideration.

Let us denote by L the reference length of the system, by Lx the position, by
(2kT0/m)1/2ζ the molecular velocity, and by ρ0(2kT0/m)−3/2(1 + φ)E(ζ ) the velocity dis-
tribution function of gas molecules, where k is the Boltzmann constant and m is the mass of
a gas molecule. Then, the behavior of the gas, the perturbed velocity distribution function φ,
is described by the following linearized Boltzmann equation:

ζi

∂φ

∂xi

= 2√
π

1

Kn
L(φ), (22)

where Kn is the Knudsen number defined by Kn = �0/L with �0 being the mean free path
of a molecule in the gas at the reference equilibrium state.

Let us denote by D the domain of x representing the gas domain under consideration. The
boundary ∂D of the domain is split into two parts: the part ∂Dw representing the real bound-
ary and the part ∂Dg representing the remaining imaginary boundary. As the domain D, we
consider the following two possibilities:

1. D is a bounded domain.
2. D is an unbounded domain, and the real boundary ∂Dw is confined in a finite region, i.e.,

there exists a sphere with a finite radius that contains ∂Dw in its interior.

It is important to note that the second assumption excludes unbounded domains in one and
two-dimensional problems from the subsequent discussions.

As to the real boundary part, we denote by T0(1 + τw) the temperature of the real
boundary ∂Dw, by p0(1 + Pw) the corresponding saturation pressure of the gas, and by
(2kT0/m)1/2uw the velocity of the boundary, where p0 = (ρ0/m)kT0. Then, φ obeys the
following condition on ∂Dw:

φ = gw +
∫

ζ∗
n <0

|ζ ∗
n |E(ζ ∗)

|ζn|E(ζ )
R(ζ ∗, ζ ;x)(φ∗ − g∗

w)dζ ∗ for ζn > 0. (23)

Here R = RCR on the simple boundary and R = RPR on the interface, where RCR and RPR

are those in Appendix A that satisfy the condition of detailed balance (31). The function gw

is given by (5). The kernel R multiplied by (2kT0/m)3/2 is the reflection kernel of the real
boundary which is at rest with the reference temperature T0. In what follows, irrespective of
the type of the real boundary (either R = RCR or RPR), we simply write gw as

gw = Pw + 2ζiuwi +
(

|ζ |2 − 5

2

)
τw on ∂Dw, (24)

because the addition of any ζ -independent term to gw does not influence the condition (23)
because of the third property of RCR in Appendix A. Note that uwini = 0 because we are
concerned with the steady problem.
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On the imaginary boundary ∂Dg, φ obeys the following condition:

1. When D is bounded, ∂Dg = ∂D(i)
g ∪ ∂D(iii)

g and φ obeys the condition (11a) or (11c):

φ(x, ζ ) = hin(x, ζ ) for ζn > 0 on ∂D(i)
g , (25a)

φ(x, ζ ) = h(x, ζ ) +
∫

∂D
(iii)
g

∫
ζ ′
n′<0

P (x ′, ζ ′,x, ζ )(φ′ − h′)dζ ′dS′ for ζn > 0 on ∂D(iii)
g .

(25b)

2. When D is unbounded, ∂Dg = ∂D(ii)
g , and φ obeys the condition (11b):

φ(x, ζ ) → h(x, ζ ) as |x| → ∞, (25c)

where h is a solution of (22).

Note that h is defined for the whole range of ζ in each case. As in Sect. 2.2.1, we extend
the range of the function hin from ζn > 0 to the whole range of ζ and denote the extended
function by h. The way of extension is arbitrary and does not affect the subsequent results.

Most of the cases, we are concerned with the flow velocity (2kT0/m)1/2ui , heat-flow vec-
tor 1

2 ρ0(2kT0/m)3/2Qi , and stress tensor p0(δij +Pij ) of the gas, where δij is the Kronecker
delta. In particular, their component normal to the boundary is of special interest, which will
be denoted by un, Qn, and Pnj :

un = uini = 〈ζnφ〉, Qn = Qini =
〈
ζn

(
|ζ |2 − 5

2

)
φ

〉
, Pnj = Pijni = 〈2ζnζjφ〉.

Note that they represent the dimensionless inward fluxes of mass, heat, and momentum
through the boundary at the position, respectively.

As is noted in Sect. 2.2.2, all the conditions in Proposition 2 are fulfilled by any two
solutions of (22), (23), and (25) with gw given by (24). The first condition is obviously
fulfilled by the definition of R, while the second is due to Lemma 2.9 Thus, the symmetric
relation (14) holds between any two solutions discussed in Sect. 4.

4.2 Preliminary Argument—Motivation and Basic Results

If h = 0 on ∂Dg, the perturbation φ from the reference equilibrium state is induced only by
the source gw on ∂Dw. Since gw is a linear combination of 1, ζ with ζn = 0, and |ζ |2 − 5

2 ,
we are motivated to consider the response of the system to these elemental sources on ∂Dw

and to represent φ as their superposition.
Let x0 be a point on the real boundary ∂Dw. We introduce three elemental solutions of the

boundary-value problem (22), (23), and (25) listed in the first three lines in Table 1, which
we denote by G(P ;x0)(x, ζ ), G(T ;x0)(x, ζ ), and G(t;x0)(x, ζ ). Each of them represents the
response of the system to the corresponding elemental source put on ∂Dw, and thus we call

9Note that the addition of Pw to gw made in (24) on a simple boundary does not change the value of the first
term of each side of (14) because 〈ζnφ〉 = 0 there.
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Table 1 Green functions for elemental sources on ∂Dw. The domain may be bounded or unbounded

Green functiona Corresponding elemental sourceb Note

G(P ;x0)(x, ζ ) gw = δ(x − x0) h = 0 —

G(T ;x0)(x, ζ ) gw = (|ζ |2 − 5
2 )δ(x − x0) h = 0 —

G(t;x0)(x, ζ ) gw = 2ζi ti δ(x − x0) h = 0 G(t;x0)(x, ζ ) = −G(−t;x0)(x, ζ )

G(P ;S)(x, ζ ) gw = χS(x) h = 0 G(P ;S)(x, ζ ) = ∫
S G(P ;x0)(x, ζ )dS0

G(T ;S)(x, ζ ) gw = (|ζ |2 − 5
2 )χS(x) h = 0 G(T ;S)(x, ζ ) = ∫

S G(T ;x0)(x, ζ )dS0

at is a unit vector tangential to ∂Dw at x0. S ⊆ ∂Dw

bδ is the δ-function. χS(x) = 1 for x ∈ S and χS(x) = 0 otherwise

them the Green functions10 with respect to x0 on ∂Dw. If necessary, we call G(P ;x0), G(T ;x0),
and G(t;x0) the Green function for the pressure source, temperature source, and velocity
source in the t-direction, respectively. Any solution φ of the boundary-value problem (22),
(23), and (25) with h = 0 can be expressed as a superposition of the Green functions:

φ =
∫

∂Dw

(
Pw(x0)G

(P ;x0) + τw(x0)G
(T ;x0) − |uw(x0)|G(−ûw;x0)

)
dS0, (26)

where ûw = uw/|uw| and dS0 is the surface element at position x0. Here and in what follows,
we denote the moments of the Green function by putting the corresponding superscript. For
instance, u

(P ;x0)

i (x) = 〈ζiG
(P ;x0)(x, ζ )〉. The first important observation is a reciprocity of

the Green functions in the following sense:

Lemma 3 For any points x0 and x1 on ∂Dw, the following relation holds:

⎡
⎣

u
(P ;x1)
n (x0), u

(T ;x1)
n (x0), u

(−s;x1)
n (x0)

Q
(P ;x1)
n (x0), Q

(T ;x1)
n (x0), Q

(−s;x1)
n (x0)

P
(P ;x1)
nt (x0), P

(T ;x1)
nt (x0), P

(−s;x1)
nt (x0)

⎤
⎦

=
⎡
⎣

u
(P ;x0)
n (x1), Q

(P ;x0)
n (x1), P

(P ;x0)
ns (x1)

u
(T ;x0)
n (x1), Q

(T ;x0)
n (x1), P

(T ;x0)
ns (x1)

u
(−t;x0)
n (x1), Q

(−t;x0)
n (x1), P

(−t;x0)
ns (x1)

⎤
⎦ , (27)

where Pnt = Pnj tj , Pns = Pnj sj , and t and s are a unit vector tangential to the boundary at
point x0 and x1 respectively.

Proof Proposition 2 is applicable to any two Green functions (see the last paragraph of
Sect. 4.1). With φA = G(α;x0) and φB = G(β;x1) (α = P,T ,−t ; β = P,T ,−s), we apply the
symmetric relation (14). Since IA = 0, IB = 0, hA = 0, and hB = 0, (14) is reduced to

∫
∂Dw

〈ζng
A−
w G(β;x1)(x, ζ )〉dS =

∫
∂Dw

〈ζng
B−
w G(α;x0)(x, ζ )〉dS.

10In the present paper, we shall use the term “Green functions” for the solution even when the corresponding
elemental source is not a point source. See, for instance, the last two lines in Table 1.
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Let us consider the case α = P and β = T . Since gA
w = δ(x − x0) and gB

w =
(|ζ |2 − 5

2 )δ(x − x1), performing the surface integration on ∂Dw yields

〈ζnG
(T ;x1)(x0, ζ )〉 =

〈
ζn

(
|ζ |2 − 5

2

)
G(P ;x0)(x1, ζ )

〉
,

which is no other than the equality u
(T ;x1)
n (x0) = Q

(P ;x0)
n (x1). Other equalities can be proved

in the same way by changing the pair of α and β . �

Lemma 3 leads to the following important consequence, if it is linked to (26):

Corollary 1 Consider the boundary-value problem (22), (23), and (25) with h = 0. For any
point x0 on ∂Dw, the fluxes normal to the boundary can be expressed by

⎡
⎣

un(x0)

Qn(x0)

Pnt (x0)

⎤
⎦ =

∫
∂Dw

⎡
⎢⎣

Pw(x)u
(P ;x0)
n (x) + τw(x)Q

(P ;x0)
n (x) − uwj (x)P

(P ;x0)

nj (x)

Pw(x)u
(T ;x0)
n (x) + τw(x)Q

(T ;x0)
n (x) − uwj (x)P

(T ;x0)

nj (x)

Pw(x)u
(−t;x0)
n (x) + τw(x)Q

(−t;x0)
n (x) − uwj (x)P

(−t;x0)

nj (x)

⎤
⎥⎦dS,

(28)

where t is a unit vector tangential to the boundary at x0.

Proof The superposition (26) yields

⎡
⎣

un(x0)

Qn(x0)

Pnt (x0)

⎤
⎦ =

∫
∂Dw

⎡
⎢⎣

Pw(x)u(P ;x)
n (x0) + τw(x)u(T ;x)

n (x0) − |uw(x)|u(−ûw;x)
n (x0)

Pw(x)Q(P ;x)
n (x0) + τw(x)Q(T ;x)

n (x0) − |uw(x)|Q(−ûw;x)
n (x0)

Pw(x)P
(P ;x)
nt (x0) + τw(x)P

(T ;x)
nt (x0) − |uw(x)|P (−ûw;x)

nt (x0)

⎤
⎥⎦dS,

and the substitution of (27) leads to the desired expression. �

Corollary 1 shows that each of the mass, tangential momentum, and heat fluxes at a
point x0 on the real boundary ∂Dw is expressed as a weighted sum of the fluxes over the
boundary ∂Dw induced by the corresponding Green function with respect to that point. The
correspondence is as follows: the mass flux ⇔ the pressure source, the heat flux ⇔ the
temperature source, and the momentum flux ⇔ the velocity source.

4.3 Representation Theorem

Corollary 1 implies a reduction of the original problem to a single elemental problem of
finding the Green function corresponding to the flux of interest. A natural question arises
whether a similar representation could be obtained for general situations such that h is not
necessarily zero. Fortunately, we can give an affirmative answer to this question, which we
present here. The key to the generalization is the fact that one can recover Corollary 1 by
directly applying Proposition 2 to the pair of φ in Sect. 4.2 and the Green function. To be
specific, the representations of un(x0), Qn(x0), Pnt (x0) are respectively recovered by the
application of Proposition 2 to the pairs of φ and G(P ;x0), φ and G(T ;x0), and φ and G(−t;x0).
This alternative approach enables us to perform the generalization by the use of suitable
elemental sources and the corresponding Green functions. We call the set of expressions
thus obtained the representation theorem on mass, momentum, and heat fluxes.

Actually, there are five versions of the representation theorem depending on the situation.
We present them in Sects. 4.3.1–4.3.3.
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4.3.1 Representation of Fluxes Through ∂Dw

Proposition 3 (Representation Theorem 1) Consider the boundary-value problem (22),
(23), and (25). The fluxes of mass, heat, and tangential momentum through ∂Dw at x0

are represented in terms of the corresponding Green function, irrespective of whether D

is bounded or unbounded:

⎡
⎣

un(x0)

Qn(x0)

Pnt (x0)

⎤
⎦ =

∫
∂Dw

⎡
⎢⎣

Pwu
(P ;x0)
n + τwQ

(P ;x0)
n − uwiP

(P ;x0)

ni

Pwu
(T ;x0)
n + τwQ

(T ;x0)
n − uwiP

(T ;x0)

ni

Pwu
(−t;x0)
n + τwQ

(−t;x0)
n − uwiP

(−t;x0)

ni

⎤
⎥⎦dS

+
∫

∂Dg

⎡
⎣

〈ζnh
−G(P ;x0)〉

〈ζnh
−G(T ;x0)〉

〈ζnh
−G(−t;x0)〉

⎤
⎦dS,

where t is an arbitrary unit vector tangential to the boundary at x0.11 The way of extension
of hin on ∂D(i)

g does not influence the relation. 12

Proof We apply Proposition 2 to the pair of φB = G(α;x0) (α = P,T ,−t) and φA = φ, where
φ is the solution of the boundary-value problem (22), (23), and (25). Since IA = 0, gA

w = gw,
hA = h, IB = 0, and hB = 0, the symmetric relation (14) is reduced to

∫
∂Dw

〈ζng
B−
w φ〉dS =

∫
∂Dw

〈ζng
−
w G(α;x0)〉dS +

∫
∂Dg

〈ζnh
−G(α;x0)〉dS,

where gB
w = δ(x − x0), (|ζ |2 − 5

2 )δ(x − x0), and −2ζi tiδ(x − x0) for α = P , T , and t ,
respectively. Substitution of the specific form of gB

w and gw yields the desired representa-
tion. �

Proposition 3 can be transformed into the statement on the fluxes through an arbitrary
area on ∂Dw, which is useful in many applications. To derive it, we introduce the Green
functions with respect to an area on ∂Dw defined in the last two lines in Table 1. If we denote
by ρ0L

2(2kT0/m)1/2 M(Aw) and 1
2ρ0L

2(2kT0/m)3/2 Q(Aw) the mass and heat transfered to
an area Aw on ∂Dw per unit time, they are written in terms of un and Qn as

[ M(Aw)

Q(Aw)

]
= −

∫
Aw

[
un(x0)

Qn(x0)

]
dS0.

Substituting the representation in Proposition 3 and performing the surface integration with
respect to x0 leads to the representation in terms of the Green functions with respect to Aw:13

11We may consider the Green function G(n;x0) that is the solution of the problem (22), (23), and (25) with
h = 0 and gw = 2ζnδ(x − x0). Then, we can derive the representation for an arbitrary component of the
force. In the present work, however, we restrict ourselves to derive a representation in terms of the Green
functions satisfying the physical requirement uw · n = 0. The same is true for the general representations of
the torque on the real boundary.
12On ∂D

(i)
g , h is an arbitrary extension of hin from ζn > 0 to the whole range of ζ , and hence h− for ζn > 0

is the extended part. The arbitrariness of this part is killed in the moment 〈ζnh−G(α;x0)〉 (α = P,T ,−t ),
because G(α;x0) = 0 for ζn > 0 by definition.
13The same representation is obtained by applying Proposition 2 to the pair of φB = G(α;Aw) and φA = φ

directly, which would be a less demanding way in mathematical rigor.
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Proposition 4 (Representation Theorem 2) Consider the boundary-value problem (22),
(23), and (25). Irrespective of whether D is bounded or unbounded, the outward fluxes of
mass and heat through an area Aw on ∂Dw are represented in terms of the corresponding
Green function with respect to this area:

[ M(Aw)

Q(Aw)

]
= −

∫
∂Dw

[
Pwu(P ;Aw)

n + τwQ(P ;Aw)
n − uwiP

(P ;Aw)
ni

Pwu(T ;Aw)
n + τwQ(T ;Aw)

n − uwiP
(T ;Aw)
ni

]
dS

−
∫

∂Dg

[ 〈ζnh
−G(P ;Aw)〉

〈ζnh
−G(T ;Aw)〉

]
dS.

The way of extension of hin on ∂D(i)
g does not influence the relation (see footnote 12).14

4.3.2 Representation of Fluxes Through ∂Dg for a Bounded Domain

As to the fluxes through ∂Dg, we need to discuss the bounded and unbounded domains
separately. Here, we focus on the former and introduce the Green functions listed in Table 2.
The main difference from the previous case lies in the Green function for the velocity source,
i.e., the direction of the velocity source � is not necessarily tangential to the boundary but
rather arbitrary. This feature allows us to have the representation of not only the mass and
heat fluxes but also the momentum flux through an arbitrary area on ∂Dg. We first present the
representation for fluxes through a point on ∂Dg. The proof is similar to that in Sect. 4.3.1
and is omitted for the sake of brevity.

Proposition 5 (Representation Theorem 3) Consider the boundary-value problem (22),
(23), and (25a) or (25b) for a bounded domain. The fluxes of mass, heat, and tangential
momentum through ∂Dg at xg are represented in terms of the corresponding Green func-

Table 2 Green functions for elemental sources on ∂Dg for a bounded domain

Green functiona Corresponding elemental sourceb Note

G(P ;x0)(x, ζ ) gw = 0 h = δ(x − x0) —

G(T ;x0)(x, ζ ) gw = 0 h = (|ζ |2 − 5
2 )δ(x − x0) —

G(�;x0)(x, ζ ) gw = 0 h = 2ζi�i δ(x − x0) G(�;x0)(x, ζ ) = −G(−�;x0)(x, ζ )

G(P ;S)(x, ζ ) gw = 0 h = χS(x) G(P ;S)(x, ζ ) = ∫
S G(P ;x0)(x, ζ )dS0

G(T ;S)(x, ζ ) gw = 0 h = (|ζ |2 − 5
2 )χS(x) G(T ;S)(x, ζ ) = ∫

S G(T ;x0)(x, ζ )dS0

G(�;S)(x, ζ ) gw = 0 h = 2ζi�iχS(x) G(�;S)(x, ζ ) = ∫
S G(�;x0)(x, ζ )dS0

G(�;S)(x, ζ ) = −G(−�;S)(x, ζ )

a� is an arbitrary unit vector. S ⊆ ∂Dg

bSee the footnote b in Table 1

14We exclude from the general discussion the possibility of the Green function for the velocity source, be-
cause, in general, the direction of the vector t tangential to the boundary depends on the position.



Symmetry of the Linearized Boltzmann Equation and Its Application 771

tion:

⎡
⎣

un(xg)

Qn(xg)

Pn�(xg)

⎤
⎦ =

∫
∂Dw

⎡
⎢⎢⎣

Pwu
(P ;xg)
n + τwQ

(P ;xg)
n − uwjP

(P ;xg)

nj

Pwu
(T ;xg)
n + τwQ

(T ;xg)
n − uwjP

(T ;xg)

nj

Pwu
(−�;xg)
n + τwQ

(−�;xg)
n − uwjP

(−�;xg)

nj

⎤
⎥⎥⎦dS

+
∫

∂Dg

⎡
⎣

〈ζnh
−G(P ;xg)〉

〈ζnh
−G(T ;xg)〉

〈ζnh
−G(−�;xg)〉

⎤
⎦dS +

⎡
⎣

〈ζnh(xg, ζ )〉〈
ζn

(|ζ |2 − 5
2

)
h(xg, ζ )

〉
〈2ζnζj �jh(xg, ζ )〉

⎤
⎦ ,

where Pn� = Pnj�j and � is an arbitrary unit vector. The way of extension of hin on ∂D(i)
g

does not influence the relation. 15

Next, we show the representation of the fluxes through an area on ∂Dg. Let us denote by
ρ0L

2(2kT0/m)1/2 M(Ag), 1
2ρ0L

2(2kT0/m)3/2 Q(Ag), and p0L
2 F�(Ag) the mass, heat, and

momentum in the �-direction transfered to the area Ag on ∂Dg for a bounded domain per
unit time. p0L

2 F�(Ag) may be regarded as the force acting on the area Ag in the �-direction.
They are written in terms of un, Qn and Pn� as

⎡
⎣

M(Ag)

Q(Ag)

F�(Ag)

⎤
⎦ = −

∫
Ag

⎡
⎣

un(x)

Qn(x)

Pn�(x)

⎤
⎦dS.

Again, we just show the result and omit the proof similar to that in Sect. 4.3.1.

Proposition 6 (Representation Theorem 4) Consider the boundary-value problem (22),
(23), and (25a) or (25b) for a bounded domain. The outward fluxes of mass, heat, and mo-
mentum through an arbitrary area Ag on ∂Dg are represented in terms of the corresponding
Green function with respect to this area:

⎡
⎣

M(Ag)

Q(Ag)

F�(Ag)

⎤
⎦ = −

∫
∂Dw

⎡
⎢⎢⎣

Pwu
(P ;Ag)
n + τwQ

(P ;Ag)
n − uwjP

(P ;Ag)

nj

Pwu
(T ;Ag)
n + τwQ

(T ;Ag)
n − uwjP

(T ;Ag)

nj

Pwu
(−�;Ag)
n + τwQ

(−�;Ag)
n − uwjP

(−�;Ag)

nj

⎤
⎥⎥⎦dS

−
∫

∂Dg

⎡
⎣

〈ζnh
−G(P ;Ag)〉

〈ζnh
−G(T ;Ag)〉

〈ζnh
−G(−�;Ag)〉

⎤
⎦dS −

∫
Ag

⎡
⎣

〈ζnh〉〈
ζn

(|ζ |2 − 5
2

)
h
〉

〈2ζnζj �jh〉

⎤
⎦dS,

where � is an arbitrary unit vector. The way of extension of hin on ∂D(i)
g does not influence

the relation (see footnote 15).

15The reason is slightly different from the case explained in footnote 12. The extended part of h− is for

ζn > 0. By definition, G(α;xg) = δ(x −xg), (|ζ |2 − 5
2 )δ(x −xg), or −2ζj �j δ(x −xg) (α = P , T , or −�) in

this range, so that the contributions of the extended part to the second and third terms on the right-hand side
cancel out each other.



772 S. Takata

Table 3 Green functions for elemental sources at infinity for unbounded domain

Green functiona Corresponding elemental source Note

G(P ;∞)(x, ζ ) gw = 0 h = 1 —

G(T ;∞)(x, ζ ) gw = 0 h = (|ζ |2 − 5
2 ) —

G(�;∞)(x, ζ ) gw = 0 h = 2ζi�i G(�;∞)(x, ζ ) = −G(−�;∞)(x, ζ )

G(�(�);∞)(x, ζ ) gw = 0 h = 2εijkζi�j xk G(�(�);∞)(x, ζ ) = −G(−�(�);∞)(x, ζ )

a� is an arbitrary unit vector. �(�) = (�ij ) is an alternating matrix defined by �ij = −εijk�k , where εijk is
Edington’s epsilon

4.3.3 Representation of Fluxes Through ∂Dg for an Unbounded Domain

We finally turn to the representation of the fluxes passing through ∂Dg for an unbounded
domain and introduce the Green functions listed in Table 3. The main difference from the
previous cases is the fact that they are the Green functions for the sources on the whole area
of ∂Dg and that a new type of elemental source, which we shall call the rotation source
around �-axis, is introduced in the last line of the table. It should be reminded that in the
present case h is required to satisfy (22) and that any linearized local Maxwellian satisfying
(22) is limited to a linear combination of the elemental sources in Table 3.

Let us denote by ρ0L
2(2kT0/m)1/2 M(∞), 1

2ρ0L
2(2kT0/m)3/2 Q(∞), p0L

2 F�(∞), and
p0L

3 T�(∞) the mass, heat, momentum in the �-direction, and angular momentum around
the �-axis transfered to a far field (or ∂Dg) per unit time. p0L

2 F�(∞) and p0L
3 T�(D

∞
g )

may be regarded as the force and the torque (or the moment of force) acting on ∂Dg in the
�-direction. They are written in terms of un, Qn and Pnj as

⎡
⎢⎢⎣

M(∞)

Q(∞)

F�(∞)

T�(∞)

⎤
⎥⎥⎦ = −

∫
∂Dg

⎡
⎢⎢⎣

un(x)

Qn(x)

Pn�(x)

�iεijkxjPnk(x)

⎤
⎥⎥⎦dS.

Applying Proposition 2 to the pair of the solution of the boundary-value problem (22), (23),
and (25) and the Green functions in Table 3 leads to the following:

Proposition 7 (Representation Theorem 5) Consider the boundary-value problem (22),
(23), and (25c) for an unbounded domain. The outward fluxes of mass, heat, and linear
and angular momentums through ∂Dg (i.e., the net fluxes toward the outer far field) are
represented in terms of the corresponding Green function:

⎡
⎢⎢⎣

M(∞)

Q(∞)

F�(∞)

T�(∞)

⎤
⎥⎥⎦ = −

∫
∂Dw

⎡
⎢⎢⎢⎣

Pwu(P ;∞)
n + τwQ(P ;∞)

n − uwjP
(P ;∞)
nj

Pwu(T ;∞)
n + τwQ(T ;∞)

n − uwjP
(T ;∞)
nj

Pwu(−�;∞)
n + τwQ(−�;∞)

n − uwjP
(−�;∞)
nj

Pwu
(−�(�);∞)
n + τwQ

(−�(�);∞)
n − uwjP

(−�(�);∞)

nj

⎤
⎥⎥⎥⎦dS

−
∫

∂Dg

〈
ζnh

−

⎡
⎢⎢⎣

G(P ;∞) − 1

G(T ;∞) − (|ζ |2 − 5
2 )

G(−�;∞) + 2ζj �j

G(−�(�);∞) + 2ζj εjkl�kxl

⎤
⎥⎥⎦

〉
dS,

where � is an arbitrary unit vector.
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Practically, it is important to note that the above representation yields immediately that of
the outward net fluxes through ∂Dw by changing the sign of the right-hand side, because of
the conservation of mass, linear and angular momentums, and energy.

4.4 Reciprocity of the Fluxes Induced by the Green Functions

As a direct consequence of Propositions 4–7, we obtain a set of corollaries on the reciprocity
of the Green functions, which we summarize here. Besides its significance by itself, the
reciprocity will play a key role in our entropy theory to be developed in a separate paper.
Before showing the corollaries, let us recall the notation convention immediately after (26).
For instance, we denote by M(α;Bw)(Aw) and Q(α;Bw)(Aw) the dimensionless outward fluxes
of mass and heat through area Aw induced by the Green function with respect to area Bw:

[ M(α;Bw)(Aw)

Q(α;Bw)(Aw)

]
= −

∫
Aw

[
u(α;Bw)

n (x0)

Q(α;Bw)
n (x0)

]
dS0 (α = P,T ).

Throughout this subsection, � and m are an arbitrary unit vector and the component in their
direction will be indicated by subscripted � and m, e.g., F� = Fj �j , Pnm = Pnjmj .

Corollary 2 For any areas Aw, Bw on ∂Dw,

[ M(P ;Bw)(Aw)

Q(P ;Bw)(Aw)

]
=

[ M(P ;Aw)(Bw)

M(T ;Aw)(Bw)

]
,

[ M(T ;Bw)(Aw)

Q(T ;Bw)(Aw)

]
=

[ Q(P ;Aw)(Bw)

Q(T ;Aw)(Bw)

]
.

Proof Apply Proposition 4 to the boundary-value problem for G(α;Bw) (α = P,T ). �

Corollary 3 For any x0, x1 ∈ ∂Dg in a bounded domain,

⎡
⎣

u
(P ;x0)
n (x1), u

(T ;x0)
n (x1), u

(−m;x0)
n (x1)

Q
(P ;x0)
n (x1), Q

(T ;x0)
n (x1), Q

(−m;x0)
n (x1)

P
(P ;x0)

n� (x1) − ni�iδ(x1 − x0), P
(T ;x0)

n� (x1), P
(−m;x0)

n� (x1)

⎤
⎦

=
⎡
⎣

u
(P ;x1)
n (x0), Q

(P ;x1)
n (x0), P

(P ;x1)
nm (x0) − nimiδ(x0 − x1)

u
(T ;x1)
n (x0), Q

(T ;x1)
n (x0), P

(T ;x1)
nm (x0)

u
(−�;x1)
n (x0), Q

(−�;x1)
n (x0), P

(−�;x1)
nm (x0)

⎤
⎦ .

Corollary 4 For any xw ∈ ∂Dw and xg ∈ ∂Dg for a bounded domain, the following relation
holds:

⎡
⎢⎣

u(P ;xw)
n (xg), u(T ;xw)

n (xg), u(−t;xw)
n (xg)

Q(P ;xw)
n (xg), Q(T ;xw)

n (xg), Q(−t;xw)
n (xg)

P
(P ;xw)
n� (xg), P

(T ;xw)
n� (xg), P

(−t;xw)
n� (xg)

⎤
⎥⎦

=
⎡
⎢⎣

u
(P ;xg)
n (xw), Q

(P ;xg)
n (xw), P

(P ;xg)

nt (xw)

u
(T ;xg)
n (xw), Q

(T ;xg)
n (xw), P

(T ;xg)

nt (xw)

u
(−�;xg)
n (xw), Q

(−�;xg)
n (xw), P

(−�;xg)

nt (xw)

⎤
⎥⎦ ,

where t is a unit vector tangential to ∂Dw at xw.
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Proof Apply Proposition 5 to the boundary-value problem for G(α;x0) (α = P,T ,−m) by
putting xg = x1 for Corollary 3 and to that for G(α;xw) (α = P,T ,−t) for Corollary 4. �

Corollary 5 For any areas Ag, Bg ⊆ ∂Dg in a bounded domain,

⎡
⎢⎣

M(P ;Bg)(Ag), M(T ;Bg)(Ag), M(−m;Bg)(Ag)

Q(P ;Bg)(Ag), Q(T ;Bg)(Ag), Q(−m;Bg)(Ag)

F (P ;Bg)

� (Ag) + �i

∫
Ag∩Bg

nidS, F (T ;Bg)

� (Ag), F (−m;Bg)

� (Ag)

⎤
⎥⎦

=

⎡
⎢⎢⎣

M(P ;Ag)(Bg), Q(P ;Ag)(Bg), F (P ;Ag)
m (Bg) + mi

∫
Ag∩Bg

nidS

M(T ;Ag)(Bg), Q(T ;Ag)(Bg), F (T ;Ag)
m (Bg)

M(−�;Ag)(Bg), Q(−�;Ag)(Bg), F (−�;Ag)
m (Bg)

⎤
⎥⎥⎦ .

Corollary 6 For any areas Aw ∈ ∂Dw and Ag ∈ ∂Dg in a bounded domain,
⎡
⎢⎣

M(P ;Aw)(Ag), M(T ;Aw)(Ag)

Q(P ;Aw)(Ag), Q(T ;Aw)(Ag)

F (P ;Aw)

� (Ag), F (T ;Aw)

� (Ag)

⎤
⎥⎦ =

⎡
⎣

M(P ;Ag)(Aw), Q(P ;Ag)(Aw)

M(T ;Ag)(Aw), Q(T ;Ag)(Aw)

M(−�;Ag)(Aw), Q(−�;Ag)(Aw)

⎤
⎦ .

Proof Apply Proposition 6 to the boundary-value problem for G(α;Bg) (α = P,T ,−m) for
Corollary 5 and to that for G(α;Aw) (α = P,T ) for Corollary 6. �

Corollary 7 The following reciprocal relation holds:

M(T ;∞)(∞) = Q(P ;∞)(∞), M(−m;∞)(∞) = F (P ;∞)
m (∞),

Q(−m;∞)(∞) = F (T ;∞)
m (∞), F (−m;∞)

� (∞) = F (−�;∞)
m (∞),

M(−�(m);∞)(∞) = T (P ;∞)
m (∞), F (−�(m);∞)

� (∞) = T (−�;∞)
m (∞),

Q(−�(m);∞)(∞) = T (T ;∞)
m (∞), T (−�(m);∞)

� (∞) = T (−�(�);∞)
m (∞).

Corollary 8 For any x ∈ ∂Dw and A ⊆ ∂Dw,
⎡
⎢⎢⎢⎣

M(P ;x)(∞), M(T ;x)(∞), M(−m;x)(∞)

Q(P ;x)(∞), Q(T ;x)(∞), Q(−m;x)(∞)

F (P ;x)
� (∞), F (T ;x)

� (∞), F (−m;x)
� (∞)

T (P ;x)
� (∞), T (T ;x)

� (∞), T (−m;x)
� (∞)

⎤
⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎣

u(P ;∞)
n (x), Q(P ;∞)

n (x), P (P ;∞)
nm (x)

u(T ;∞)
n (x), Q(T ;∞)

n (x), P (T ;∞)
nm (x)

u(−�;∞)
n (x), Q(−�;∞)

n (x), P (−�;∞)
nm (x)

u
(−�(�);∞)
n (x), Q

(−�(�);∞)
n (x), P

(−�(�);∞)
nm (x)

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

M(P ;A)(∞), M(T ;A)(∞)

Q(P ;A)(∞), Q(T ;A)(∞)

F (P ;A)
� (∞), F (T ;A)

� (∞)

T (P ;A)

� (∞), T (T ;A)

� (∞)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M(P ;∞)(A), Q(P ;∞)(A)

M(T ;∞)(A), Q(T ;∞)(A)

M(−�;∞)(A), Q(−�;∞)(A)

M(−�(�);∞)(A), Q(−�(�);∞)(A)

⎤
⎥⎥⎥⎦ .
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Proof Apply Proposition 7 to the boundary-value problem for G(α;∞) (α = T ,−m,−�(m))

for Corollary 7 and to that for G(α;x) (α = P,T ,−m) or G(β;A) (β = P,T ) for Corol-
lary 8. �

5 Applications of the Representation Theorem

In this section, we present application examples of the representation theorem. Some of them
(Examples 1, 2, and 5) have been discussed in the literature as the examples of the Onsager–
Casimir reciprocity in the connection to the entropy production (e.g., [2, 8, 9, 42, 43]). It
should be noted that they are recovered merely as byproducts of the representation theorem
and that the discussion of the entropy production is entirely excluded from the present paper.

5.1 Mass and Heat Fluxes and the Force Acting on the Resting Bodies in an Unbounded
Domain

Consider a group of N resting bodies (say, B1, . . . ,BN ) arranged in a finite region in the
gas occupying an unbounded domain. In a far field, the gas is in the equilibrium state at rest
with density ρ0 and temperature T0. The respective bodies in the group may be a simple solid
body or a condensed phase of the gas; they do not change in time their shape and surface
temperature and have no surface velocity.

When the deviation from the reference equilibrium state is small, the problem can be
linearized around the reference state. Then, as a direct application of Proposition 4 and
Corollary 2 (∂Dw = ∂B1 + · · · + ∂BN , ∂Dg = ∂D(ii)

g , Aw = ∂Bj , Bw = ∂Bk , uwi = 0, and
h = 0), we have the following statement for the mass and heat transfered to the resting
bodies:

Corollary 9 (Mass and heat transfered to the resting bodies) The mass and heat transfered
to the body Bj (j = 1, . . . ,N ) per unit time can be expressed by the mass and heat flow dis-
tributions over the whole body surface ∂Dw induced by the Green functions for the pressure
and temperature sources with respect to ∂Bj :

[ M(∂Bj )

Q(∂Bj )

]
= −

∫
∂Dw

[
u

(P ;∂Bj )
n (x), Q

(P ;∂Bj )
n (x)

u
(T ;∂Bj )
n (x), Q

(T ;∂Bj )
n (x)

][
Pw(x)

τw(x)

]
dS.

In particular:

(i) if there is no condensed phase in the group of bodies, the mass transfered to each body
vanishes and the above expression becomes much simpler as16

Q(∂Bj ) = −
∫

∂Dw

Q
(T ;∂Bj )
n (x)τw(x)dS. (29)

16Consider a temperature field in the fluid dynamic limit, which is described by the Laplace equation. Let

us denote by τ the perturbed temperature of the gas and by τ
(∂Bj ) the counterpart when the temperature

source is put on ∂Bj , i.e., �τ = 0, �τ
(∂Bj ) = 0, τ = τw on ∂Dw, τ

(∂Bj ) = 1 on ∂Bj , and τ
(∂Bj ) = 0 on

∂Dw \ ∂Bj . Then, the Green formula
∫
D(τ�τ

(∂Bj ) − τ
(∂Bj )

�τ)dx = ∫
∂D(τ∇τ

(∂Bj ) − τ
(∂Bj )∇τ) · ndS

is reduced to

0 =
∫
∂Dw

τw∇τ
(∂Bj ) · ndS −

∫
∂Bj

∇τ · ndS +
∫
∂Dg

(τ∇τ
(∂Bj ) − τ

(∂Bj )∇τ) · ndS.
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(ii) the following reciprocity holds:

[ M(P ;∂Bk)(∂Bj ), M(T ;∂Bk)(∂Bj )

Q(P ;∂Bk)(∂Bj ), Q(T ;∂Bk)(∂Bj )

]
=

[ M(P ;∂Bj )(∂Bk), Q(P ;∂Bj )(∂Bk)

M(T ;∂Bj )(∂Bk), Q(T ;∂Bj )(∂Bk)

]
.

Example 1 (Evaporation from and condensation onto a volatile sphere) Consider the case
where the group of the bodies is a single spherical condensed phase of the gas (for short, a
volatile sphere). Denoting by S the surface of the volatile sphere, we have the expression

[ M(S)

Q(S)

]
= −

∫
S

[
u(P ;S)

n (x), Q(P ;S)
n (x)

u(T ;S)
n (x), Q(T ;S)

n (x)

][
Pw(x)

τw(x)

]
dS

and the reciprocity

M(T ;S)(S) = Q(P ;S)(S).

Noted that M(P ;S) and Q(P ;S) are the dimensionless mass and heat passing through a point
on S per unit time and area for Pw = 1 and τw = 0, while M(T ;S) and Q(T ;S) are those for
Pw = 0 and τw = 1. Thus, as far as the mass and heat transfers are concerned, the general
result is readily obtained by the study of two elemental situations, Pw = 1, τw = 0 and
Pw = 0, τw = 1. The above reciprocity was numerically verified in the literature (e.g.,
[42, 43]).

We also have a statement on the force and torque on the group of resting bodies (not
individual bodies) as a consequence of Proposition 7 and the conservation of linear and
angular momentums:

Corollary 10 (Force and torque on the group of resting bodies) The force and torque on the
group of bodies can be obtained from the mass and heat flow distributions over the whole
body surface ∂Dw induced by the Green functions for velocity and rotation sources in a far
field. If we denote by p0L

2 F�(∂Dw) and p0L
3 T�(∂Dw) the force and torque on the group of

bodies in the �-direction. they are expressed as

[ F�(∂Dw)

T�(∂Dw)

]
= −

∫
∂Dw

(
Pw(x)

[
u(�;∞)

n (x)

u
(�(�);∞)
n (x)

]
+ τw(x)

[
Q(�;∞)

n (x)

Q
(�(�);∞)
n (x)

])
dS.

In particular, when there is no condensed phase in the group, i.e., when ∂Dw is a simple
boundary, the mass transfered to each body vanishes and the force and torque on the group
of bodies can be expressed only by the heat flow distribution:

[ F�(∂Dw)

T�(∂Dw)

]
= −

∫
∂Dw

τw(x)

[
Q(�;∞)

n (x)

Q
(�(�);∞)
n (x)

]
dS.

Since τ and τ
(∂Bj ) decays with the rate of |x|−1 as |x| → ∞, the third integral vanishes, and we have

∫
∂Dw

τw∇τ
(∂Bj ) · ndS =

∫
∂Bj

∇τ · ndS.

The expression (29) is the generalization of this relation to the gas of arbitrary Knudsen number.
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Proof By the linear and angular momentum conservations, F�(∂Dw) = −F�(∞) and
T�(∂Dw) = −T�(∞). Use Proposition 7 for the representation of F�(∞) and T�(∞) by
putting uwi = 0 and h = 0. Finally use the parity of G(�;∞) in Table 3. �

Example 2 (Force acting on a simple solid body with non-uniform temperature [44]) Con-
sider the case where the group of the bodies is a single simple solid body. Denoting by S the
surface of the body, the dimensionless force acting on the body is given by

F�(S) = −
∫

S
τw(x)Q(�;∞)

n (x)dS.

Q(�;∞)
n is the dimensionless heat flow induced by G(�;∞). This Green function is a solution

of the problem of a uniform slow flow in the �-direction past the body with the reference
uniform upstream temperature T0 (to be precise, the solution normalized by the upstream
flow speed).

Extension of Corollaries 9 and 10 to the case of bodies with moving surface under the
constraint of uw ·n = 0 is straightforward. In the case of a bounded domain with the bound-
ary composed only of the real boundary (∂D = ∂Dw), Corollaries 9 and 10 hold as it is
with a proper choice of the reference equilibrium state. On the other hand, if the gas is not
necessarily in some resting equilibrium state in a far field, we need to use Proposition 4 or 7
directly. The next is such an example.

Example 3 (Thermophoresis) Consider an infinite expanse of a resting gas with the temper-
ature distribution T0(1 + Cx1) (C: a positive constant), in which a single simple solid body
with temperature T0 is located at the origin. In this situation, there occurs a force acting
on the body, which is the present concern (see, e.g., [5–7] and the references therein). The
sources on the boundary are given by gw = 0 and h = C[(|ζ |2 − 5

2 )x1 − (
√

π/2)Kn ζ1A(|ζ |)]
in this situation, where A is the one already defined in Sect. 3.1. We denote by S the surface
of the body and use Proposition 7 to obtain the relation

F�(S) = −F�(∞) = −C

∫
∂Dg

(
x1Q

(�;∞)
n +

√
π

2
Kn〈ζnζ1A(|ζ |)G(�;∞)〉

)
dS.

Here the parity of G(�;∞) in Table 3 and the conservation of momentum have been used.
In the meantime, since both h and G(�;∞) solve (22), we can show in the same way as

in the proof of Proposition 1 that
∫

∂D
〈ζnh

−G(�;∞)〉dS = 0. By using this fact and ∂D =
∂Dg ∪ S, we obtain an alternative expression17

F�(S) = C

∫
∂Dw

(
x1Q

(�;∞)
n +

√
π

2
Kn〈ζnζ1A(|ζ |)G(�;∞)〉

)
dS.

5.2 Mass and Heat Fluxes Along Various Channels

Example 4 (Golse’s theorem) Consider a gas in a straight pipe with a uniform cross-section.
The temperature of the pipe is periodic and is constant in time. In the situation, a steady flow

17Our result is different from that in [8]. This is due to the fact that the term of ζ1A(|ζ |) is missing in the
asymptotic form of the perturbed distribution function in that reference. The expression in [8] is incorrect.
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Fig. 2 A straight pipe with a
periodic temperature distribution

is induced in the gas by the non-uniformity of the temperature of the pipe. Golse proved that
the induced flow field does not generate the mass flux through the pipe cross-section, by
assuming that the temperature variation is so small that the linearization of the problem is
allowed (Golse’s theorem [12]). We shall show below that we can reach the same conclusion
with a slight extension of the statement by the application of Proposition 6.

Let us take the coordinate x1 in the axial direction of the pipe as in Fig. 2. Let s be
the period in this direction and D be the domain surrounded by the pipe wall and by the
cross-sections S0 and S1 located respectively at x1 = 0 and x1 = s. Because Pw = 0, uw = 0,
and h = 0, Proposition 6 yields, by putting Ag = S1, the relation

M(S1) = −
∫

∂Dw

τw(x1,x⊥)Q(P ;S1)
n (x1,x⊥)dS,

where x⊥ = (x2, x3), and here the Green function G(P ;S1) is the solution of the problem:

ζi

∂G(P ;S1)

∂xi

= 2√
π

1

Kn
L(G(P ;S1)), (30a)

G(P ;S1)(x1,x⊥, ζ ) =
∫

ζ∗
n <0

|ζ ∗
n |E(ζ ∗)

|ζn|E(ζ )
RCR(ζ ∗, ζ )G(P ;S1)(x1,x⊥, ζ ∗)dζ ∗,

ζn > 0, (x1,x⊥) ∈ ∂Dw, (30b)

G(P ;S1)(s,x⊥, ζ ) = 1 + G(P ;S1)(0,x⊥, ζ ) for ζ1 < 0, (30c)

G(P ;S1)(0,x⊥, ζ ) = G(P ;S1)(s,x⊥, ζ ) − 1 for ζ1 > 0, (30d)

where RCR is independent of x. If the pipe wall is of the locally isotropic boundary [10, 12],
we can seek the solution in the form18 G(P ;S1) = x1/s + ζ1�(x⊥, ζ ), where � is even with
respect to ζ1. Since � is even, Q

(P ;S1)
n (= 〈ζnG

(P ;S1)〉) vanishes, so that M(S1) = 0.
In the proof by Golse in the Appendix A.4 of [12], the Maxwell-type boundary condition

with τw depending only on x1 is considered. In contrast, we arrived at the same conclusion
for a more general boundary condition and τw. In the sense, the present approach provides a
slight extension of the applicable range of his statement.

18Here we assumed the similarity solution for brevity. Actually, however, this assumption is not necessary

and we can show Q
(P ;S1)
n = 0 by the argument similar to that by Golse for the reduced problem (30).
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Fig. 3 The channel between two
parallel infinite plates and the
domain D for the application of
the representation theorem

Example 5 (Poiseuille, thermal transpiration, and Couette flows) Consider the steady be-
havior of the gas between two parallel plates located at x2 = ± 1

2 in the following cases (see,
e.g., [45–47]):

1. Poiseuille flow (PF, for short): two plates are at rest with a uniform constant temperature
T0, and a uniform gradient of pressure in the x1-direction is imposed, i.e., the gas pressure
is given by p0(1 + CPx1) with CP being constant.

2. Thermal transpiration (TT, for short): two plates are at rest with a common temperature
distribution T0(1 + CTx1) with CT being constant.

3. Couette flow (CF, for short): two plates are at a uniform constant temperature T0. The
upper plate (x2 = 1

2 ) is moving with the velocity ((2kT0/m)1/2uw1,0,0), while the lower
(x2 = − 1

2 ) is at rest.

We assume that |CP|, |CT|, and |uw1| are so small that the problems can be linearized around
the resting equilibrium state with temperature T0 and pressure p0. Further the state is as-
sumed to be independent of x3. In what follows, we denote by putting the subscript PF, TT,
and CF the solutions of the problems 1–3 normalized by the constants CP, CT, and uw1.

Let D be the domain defined by 0 < x1 < 1, − 1
2 < x2 < 1

2 , and 0 < x3 < 1 (see Fig. 3).
Let S0 and S1 the cross-section (per unit length in the x3-direction) of the channel at x1 = 0
and x1 = 1. Let S± be the surface of the plates at x2 = ± 1

2 in the range of 0 < x1 < 1 and
0 < x3 < 1. It is easy to check that the solution of problem TT solves the problem in D

with gw = x1(|ζ |2 − 5
2 ), h(x1 = 0) = 0, and h(x1 = 1) = |ζ |2 − 5

2 , while that of problem CF
solves the problem in D with gw = 2ζ1δ(x2 − 1

2 ) and h = 0. With these in mind, we apply
Proposition 6 by putting Ag = S1 to obtain

MTT(S1) = ±
∫

S±
x1Q

(P ;S1)

2 dS + Q(P ;S1)(S1), MCF(S1) = −F (P ;S1)

1 (S+).

As in Example 4, we assume the plates are of the locally isotropic boundary, so that the
Green function G(P ;S1) is given in the form of G(P ;S1) = x1 + ζ1�(x2, ζ2, |ζ |). Since � is
even in ζ1, Q

(P ;S1)

2 in the first equality vanishes. Finally noting that the normalized solu-
tion of the Poiseuille flow problem is the Green function G(P ;S1), we can rewrite the above
relations as

MTT(S1) = QPF(S1), MCF(S1) = −F1PF(S+),

which show the cross relations among the three basic flows (see, e.g., [2]).
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Fig. 4 Schematics of thermal pumps

Example 6 (Thermal pumps) Consider a gas in the pipe with periodic ditches as in Fig. 4(a).
The temperature distribution of the pipe surface is constant in time and is periodic in x1 with
the same period s as the geometric structure. It is known that a one-way flow is induced
by the non-uniform temperature in the pipe [48], which is the driving mechanism of the so-
called Knudsen pump [10, 49]. When the perturbed temperature of the pipe surface is small
enough, we can apply Proposition 6 to the gas domain D (the unit stage of the pump drawn
in solid lines in the figure) to have the relation

M(S) = −
∫

∂Dw

τw(x)Q(P ;S)
n (x)dS,

because Pw = 0, uw = 0, and h = 0, where S is the cross-section at x1 = s. Thus the mass
flux by the one-way flow induced in the pump can be expressed by the heat flow distribution
on the pipe surface of the Green function G(P ;S) for the pressure source on S.

Even when the pipe is a simple straight one with a uniform temperature distribution, a
one-way flow can be induced if two arrays of uniformly heated and unheated plates, say
B1 and B2, are put inside the channel periodically with respect to x1 with period s (see
Fig. 4(b)). The pipe equipped with such arrays of plates is called the thermal edge pump
[10, 50]. For simplicity, let the temperature of the array B2 be the same as the pipe temper-
ature T0. Then, if the uniform perturbed temperature τw1 of the array B1 is small enough,
we can apply Proposition 6 to the gas domain D (the unit stage of the pump drawn in solid
lines in the figure) to have the relation

M(S) = τw1 Q(P ;S)(∂B1),

because τw(x) = τw1 on ∂B1 and τw = 0 both on ∂B2 and on the pipe surface, Pw = 0,
uw = 0, and h = 0, where S is the cross-section at x1 = s. Thus the mass flux by the one-
way flow induced in the pump can be obtained by knowing the heat that the array B1 receives
in the flow of the Green function G(P ;S) for the pressure source on S.

6 Conclusion

In the present paper, we first established a symmetric relation (14) that holds widely between
two steady problems of the linearized Boltzmann equation in Sect. 2. We also presented a
concrete set of situations where the required condition is seen to be fulfilled by a rather
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simple argument: the bounded domain, one-dimensional half-space, and three dimensional
unbounded domain with a finite confinement of bodies. Then, in Sect. 3, we showed some
application examples to the second situation (one-dimensional half-space problems). In par-
ticular, four unknown relations among the Knudsen layer problems were newly obtained.

A remarkable difference of the first and third situations from the second was the fact that
we may deal with the source on the boundary separately in the former. Making use of this
property, we developed in Sect. 4 a unified approach to the first and third situations, on the
basis of the symmetric relation, to establish general expressions of the mass, linear and an-
gular momentum, and heat fluxes, which we called the representation theorem. The theorem
tells that the problem of finding a flux on the boundary is reduced to finding the solution of a
single elemental problem in the considered domain, which we called the Green function, the
response of the gas system to a proper elemental disturbance from the surroundings. These
disturbances are the pressure, velocity, rotation, or temperature source put on the boundary.
We finally presented some application examples of the theorem in Sect. 5.

Some of the presented examples show the recovery of the cross relations that have been
discussed in the literature as the Onsager–Casimir reciprocity on the basis of entropy produc-
tion. It suggests some relation of the present approach to that based on the entropy produc-
tion (e.g. [9, 19, 38, 51]). We shall discuss the issue in a separate paper, where the corollaries
in Sect. 4.4 will play a key role. Here we merely stress that the present straightforward ap-
proach based on (14) is widely applicable and yields useful relations or expressions without
any connection to the entropy production argument.

Appendix A: Reflection Kernel R in the Linearized Problem

We summarize the properties of the reflection kernel R (RCR and RPR) for the linearized
problem (see Appendix A.9 in [10]).

Properties of RCR

1. RCR(ζ ∗, ζ ;x) ≥ 0 for ζ ∗
n < 0, ζn > 0.

2.
∫

ζn>0 RCR(ζ ∗, ζ ;x)dζ = 1 for ζ ∗
n < 0.

3. Let ϕ be ϕ = c0 +ciζi +c4|ζ |2, where c0, ci , and c4 are independent of ζ . Among such ϕ,
only ϕ = c0 satisfies the relation

ϕ(x, ζ )E(ζ ) =
∫

ζ∗
n <0

|ζ ∗
n |

|ζn| RCR(ζ ∗, ζ ;x)ϕ(x, ζ ∗)E(ζ ∗)dζ ∗ for ζn > 0.

Note that the second property corresponds to the condition 〈ζnφ〉 = 0 of no flow across
the boundary. The third property corresponds to the natural requirement that in a resting
container with a uniform temperature the resting equilibrium state with the same temperature
is established. The specular reflection is excluded from RCR by this property.

Properties of RPR

1. RPR(ζ ∗, ζ ;x) ≥ 0 for ζ ∗
n < 0, ζn > 0.

2. For a certain given function g0(x, ζ ) ≥ 0 defined for ζn > 0,

E(ζ ) = g0(x, ζ ) +
∫

ζ∗
n <0

|ζ ∗
n |

|ζn| RPR(ζ ∗, ζ ;x)E(ζ ∗)dζ ∗ for ζn > 0.
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3. Let ϕ be ϕ = c0 +ciζi +c4|ζ |2, where c0, ci , and c4 are independent of ζ . Among such ϕ,
only ϕ = 0 satisfies the relation

ϕ(x, ζ )E(ζ ) =
∫

ζ∗
n <0

|ζ ∗
n |

|ζn| RPR(ζ ∗, ζ ;x)ϕ(x, ζ ∗)E(ζ ∗)dζ ∗ for ζn > 0.

The second and third properties are the counterpart to the third of RCR. They are a natural
requirement that in a resting volatile container with a uniform temperature the resting equi-
librium state with the same temperature and the corresponding saturation gas pressure is
established.

Appendix B: Condition of Detailed Balance

Besides the fundamental properties in Appendix A, the kernel R is often required to satisfy
the so-called condition of detailed balance. For instance, the most widely used conditions,
such as the diffuse reflection, Maxwell-type, and Cercignani–Lampis conditions, are known
to satisfy that condition. [13]

The condition of detailed balance for the kernel R in the linear problem reads

|ζ ∗
n |R(ζ ∗, ζ ;x)E(ζ ∗) = |ζn|R(−ζ ,−ζ ∗;x)E(ζ ) for ζn > 0, ζ ∗

n < 0. (31)

With this property, we can prove the following:

Lemma 4 Let φA and φB obey the condition (4) with gw = gA
w and gw = gB

w respectively. If
the kernel R satisfies the condition of detailed balance (31), the following equality holds:

〈ζn(φ
B− − gB−

w )(φA − gA
w)〉 = 0.

Proof We denote φα − gα
w by ψα (α = A,B) for brevity and rewrite the left-hand side as

〈ζnψ
B−ψA〉 =

∫
ζn>0

ζnψ
B−ψAE(ζ )dζ −

∫
ζn>0

ζnψ
BψA−E(ζ )dζ . (32)

The first term is rewritten by the use of (4) for ψA as

∫
ζn>0

ζnψ
B−ψAE(ζ )dζ =

∫
ζn>0

[∫
ζ∗
n <0

|ζ ∗
n |R(ζ ∗, ζ ;x)E(ζ ∗)ψA∗dζ ∗

]
ψB−dζ ,

while the second term is rewritten as

∫
ζn>0

ζnψ
BψA−E(ζ )dζ =

∫
ζn>0

[∫
ζ∗
n <0

|ζ ∗
n |R(ζ ∗, ζ ;x)E(ζ ∗)ψB∗dζ ∗

]
ψA−dζ

=
∫

ζ∗
n <0

[∫
ζn>0

|ζn|R(−ζ ,−ζ ∗;x)E(ζ )ψB−dζ

]
ψA∗dζ ∗.

Thus, the first and second terms cancel out each other because of the detailed balance (31). �
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